Cl(1)—Zr—Cl(2)	98.76 (1)	97.3 (1)
Cp(1)—Zr—Cp(2)	127.8	126.4 (2)
C(1)— Si — $C(2)$	111.2 (1)	110.8 (2)
C(11)—Si—C(21)	94.57 (6)	94.3 (2)

* Herrmann et al. (1989).

† Average.

 $\ddagger Zr \eta^5$ -bonded C distances, minimum-maximum.

§ Cp C-C bond distance, minimum-maximum.

The structure was solved by direct methods and refined by full-matrix least-squares techniques. C(27) and C(28) in Cp(2) show large displacement parameters indicating a slight disorder in the structure. H atoms were placed with idealized geometries (C—H = 0.96 Å) riding on their respective C atoms with fixed $U = 0.08 \text{ Å}^2$.

Data collection: P3 Data Collection Software (Siemens, 1990). Cell refinement: P3 Data Collection Software. Data reduction: SHELXTL-Plus (Sheldrick, 1991). Structure solution: SHELXTL-Plus. Structure refinement: SHELXTL-Plus. Molecular graphics: SHELXTL-Plus. Preparation of material for publication: SHELXTL-Plus.

HJGL, RPL and JHN wish to thank the Finnish Technology Development Centre (TEKES) for financial support.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: AB1236). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Burger, B., Hortmann, K., Diebold, J. & Brintzinger, H.-H. (1991). J. Organomet. Chem. 417, 9-27.
- Ellis, W. W., Hollis, K. H., Odenkirk, W., Whelan, J., Ostrander, R., Rheingold, A. L. & Bosnich, B. (1993). Organometallics, 12, 4391-4401.
- Herrmann, W. A., Rohrmann, J., Herdtweck, E., Spaleck, W. & Winter, A. (1989). *Angew. Chem.* **101**, 1536–1538.
- Kaminsky, W. (1994). Catal. Today, 20, 257-271.
- Luttikhedde, H. J. G., Leino, R. P., Näsman, J. H., Ahlgrén, M. & Pakkanen, T. (1995). J. Organomet. Chem. 486, 193-198.
- Sheldrick, G. M. (1991). SHELXTL-Plus. Release 4.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Siemens (1990). P3 Data Collection Software. Release 4.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Smith, J. A., Von Seyerl, J., Huttner, G. & Brintzinger, H.-H. (1979). J. Organomet. Chem. 173, 175–185.
- Spaleck, W., Antberg, M., Dolle, V., Klein, R., Rohrmann, J. & Winter, A. (1990). New J. Chem. 14, 499–503.
- Spaleck, W., Antberg, M., Rohrmann, J., Winter, A., Bachmann, B., Kiprof, P., Behm, J. & Herrmann, W. A. (1992). *Angew. Chem.* 104, 1373–1376.
- Stehling, U., Diebold, J., Kirsten, R., Röll, W., Brintzinger, H.-H., Jüngling, S., Mülhaupt, R. & Langhauser, F. (1994). Organometallics, 13, 964–970.
- Wilén, C.-E. & Näsman, J. H. (1994). Macromolecules, 27, 4051– 4057.

Acta Cryst. (1995). C51, 1490–1494

Molecular Stereochemistry of [Fe^{III}(TPP)(OCOCF₃)]

SHIRLEY A. MOY, JORGE A. GONZÁLEZ AND LON J. WILSON*

Department of Chemistry and Laboratory for Biochemical and Genetic Engineering, Rice University, PO Box 1892, Houston, Texas 77251, USA

(Received 7 October 1993; accepted 1 March 1995)

Abstract

(*meso*-Tetraphenylporphinato)(trifluoroacetato)iron(III), [Fe(C₂F₃O₂)(C₄₄H₂₈N₄)], consists of a central Fe atom equatorially coordinated to four pyrrole N atoms and axially coordinated to an O atom of the trifluoroacetate group. The average Fe—N bond distance is 2.054 (5) Å and the Fe atom is displaced 0.483 (1) Å from the porphinato plane. The Fe—O distance is 1.921 (4) Å. The out-of-plane displacement and the Fe—N bond lengths indicate that the Fe atom is in a high-spin state.

Comment

The structures of five mononuclear high-spin pentacoordinate oxygen-ligated iron complexes of the type [Fe^{III}(Por)(X)] (where Por = tetraphenylporphinato, TPP, or tetrakis(*p*-methoxyphenyl)porphinato, t_p -MePP, and $X = OCH_3$, OCOCH₃, OSOC₆H₅, OSO₃H or OSO₂CH₃) have been determined previously (Lecomte, Chadwick, Coppens & Stevens, 1983; Oumous, Lecomte, Protas, Cocolios & Guilard, 1984; Cocolios, Lagrange, Guilard, Oumous & Lecomte, 1984; Scheidt, Lee & Finnegan, 1988; Li *et al.*, 1987). We report here the molecular stereochemistry of [Fe^{III}(TPP)(OCOCF₃)], (I), along with a structural comparison with related complexes.

Fig. 1 presents an *ORTEP* (Johnson, 1965) view of the molecule along with the numbering scheme employed for the non-H atoms. The packing diagram given in Fig. 2 shows that the molecules of the compound interact in pairs in the lattice. The coordination-group parameters for $[Fe^{III}(TPP)(OCOCF_3)]$ are presented in Table 3 and

©1995 International Union of Crystallography Printed in Great Britain – all rights reserved

Acta Crystallographica Section C ISSN 0108-2701 ©1995 are typical of those for a pentacoordinate (porphinato)iron(III) compound in the high-spin state (Scheidt & Reed, 1981). The trifluoroacetate group was found to be disordered over two positions with site occupancies of 0.57 and 0.43. The CF₃ group was treated as a rigid group and fractional C, O and F atoms were allowed to occupy two possible positions during all refinement cycles.

Fig. 1. An ORTEP (Johnson, 1965) drawing of [Fe^{III}(TPP)(OCOCF₃)] with displacement ellipsoids at the 50% probability level. (Atoms C22A, F1A, F2A and F3A were refined isotropically.)

Fig. 2. A packing diagram for [Fe^{III}(TPP)(OCOCF₃)].

The structural parameters of $[Fe^{III}(TPP)(OCOCF_3)]$ are compared to those of other high-spin and intermediate-spin pentacoordinate oxygen-ligated (Por)iron(III) compounds in Table 3. This table shows that there is an obvious trend in these compounds between the increasing distances from the Fe atom to the O atom (Fe—O), the decreasing out-of-plane distances of the Fe atom to the mean plane of the 24-atom core

 $(Fe \cdot \cdot \cdot C_{t'})$ and the decreasing average distances between the Fe atom and the porphinato core N atoms (Fe— N_p). Shorter Fe—O distances and longer Fe $\cdots C_{t'}$ and Fe— N_p distances are indicative of iron(III) complexes in the high-spin state. For such cases, typical Fe $\cdots C_{t'_{1}}$ and Fe—N_p distances are greater than 2.045 and 0.42 Å, respectively. These long distances indicate that the iron $d_{r^2-v^2}$ and d_{r^2} orbitals are both occupied and that the spin state S is $\frac{5}{2}$ (Scheidt & Reed, 1981; Scheidt & Lee, 1987). On the other hand, values previously reported for five-coordinate admixed-spin iron(III)-porphyrin compounds are in the range 1.961-2.038 Å for Fe-N_p and 0.10-0.38 Å for the out-of-plane displacement of the Fe atom, varying according to the amount of $S = \frac{3}{2}$ or $\frac{3}{2}$ character present in the system. These shorter distances are indicative of an unoccupied or partially occupied $d_{x^2-y^2}$ antibonding orbital raised in energy relative to the d_{z^2} , d_{xy} , d_{yz} and d_{xz} orbitals because of the prox-imity of (and subsequent repulsion between) the $d_{x^2-y^2}$ electron and the sp^2 lone-pair electrons of the equatorial porphyrin N atoms (Scheidt & Reed, 1981; Scheidt & Lee, 1987; Reed et al., 1979, Gupta et al., 1987; Masuda et al., 1980).

The formal diagram of the porphinato core of $[Fe^{III}(TPP)(OCOCF_3)]$ is presented in Fig. 3. The conformation of the core is that of a rather pronounced S_4 ('Sad') ruffling. The dihedral angles formed by the peripheral phenyl rings and the 24-atom core are 85.29, 55.39, 52.60 and 49.33°. These values are somewhat smaller than usual for typical metallotetraaryl-porphyrins, which often possess phenyl ring dihedral angles in the 60 to 90° range (Scheidt & Lee, 1987).

Fig. 3. A formal diagram of the porphinato core of [Fe^{III}(TPP)-(OCOCF₃)] displaying the perpendicular displacements, in units of 0.01 Å, of each atom from the mean plane of the 24-atom core. The atom labels have been replaced by the value of the displacement.

Experimental

meso-Tetraphenylporphyrin (H₂TPP) and [Fe^{III}(TPP)CI] were synthesized by previously reported methods (Adler *et al.*, 1967; Kim, Adler & Longo, 1978; Fleischer, Palmer, Srivastava & Chaterjee, 1971). [Fe^{III}(TPP)(OCOCF₃)] was syntheC13

C14

C15

C16

0.6911 (4)

0.6223 (5)

0.5379 (5)

0.5516 (4)

0.1174 (3)

0.1336 (4)

0.1398 (4)

0.1253 (3)

0.0067 (3)

-0.0683 (4)

-0.0366(4)

0.0593 (3)

3.4 (3)

4.4 (3)

4.3 (3)

3.3 (2)

sized by the general method of Reed et al. (1979). Single crystals suitable for the X-ray structure determination were grown over a period of 2 to 3 days at 273 K under an Ar atmosphere from a 1:3 thf/heptane solvent mixture.

atmosphere from a 1:3 thf/heptane solvent mixture.		C17	0.4796 (4)	0.1264 (3) 0.1166 (4)	3.4 (2)
Crustal data		C18 C19	0.4964 (4)	0.1234 (3	0.2112(4)	3.4 (3)
Crystal aala		C19 C20	0.4249 (4)	0.1219 (4	0.2722(4)	4.5 (3)
$[Fe(C_2F_3O_2)(C_{44}H_{28}N_4)]$	Mo $K\alpha$ radiation	C24	0.4030(4)	0.1233 (4	0.3375(4) 0.5156(3)	36(3)
$M_r = 781.6$	$\lambda = 0.71073 \text{ Å}$	C2B	0.5054(4) 0.5855(5)	0 2130 (4	0.5100(5)	5.8 (4)
Monoclinic	Cell parameters from 25	C2C	0.5514 (6)	0.2204 (5	0.6333(5)	6.8 (4)
P_{2}/c	reflections	C2D	0.5342 (5)	0.1582 (5) 0.6825 (4)	5.5 (4)
$F Z_1/a$		C2E	0.5556 (8)	0.0885 (6) 0.6520 (6)	9.3 (6)
a = 14.212(3) A	$\theta = 12.52 - 17.66^{\circ}$	C2F	0.5908 (7)	0.0808 (5) 0.5681 (5)	7.9 (5)
b = 17.390(4) Å	$\mu = 0.4707 \text{ mm}^{-1}$	C7A	1.0437 (4)	0.1174 (3)	0.3506 (4)	3.3 (3)
c = 14.840(1) Å	T = 193 K	C7B	1.0717 (4)	0.0637 (4) 0.4175 (4)	3.8 (3)
$\beta = 96.10(1)^{\circ}$	Rectangular	C7C	1.1628 (5)	0.0625 (4) 0.4607 (4)	4.5 (3)
$V = 2647(1) ^{3}$	$0.40 \times 0.25 \times 0.25$ mm	C7D	1.2272 (5)	0.1156 (4) 0.4363 (4)	4.9 (3)
V = 3047(1) A		C7E	1.2021 (5)	0.1681 (4) 0.3702 (5)	4.8 (3)
Z = 4	Fulple	C/F	1.1114 (5)	0.1698 (3) 0.3271 (4)	4.1 (3)
$D_x = 1.423 \text{ Mg m}^{-3}$		C12A	0.8213 (4)	0.1051 (4) -0.0918 (4)	4.0 (3)
		C12B	0.8891 (5)	0.1585 (4	-0.113/(4)	5.5 (4)
Data collection		C12C	0.9220(0)	0.1537 (5	-0.1984(5)	0.8 (4)
Pinaky AEC 55 diffractor	$P_{\rm c} = 0.037$	C12D	0.8083(0)	0.0965 (5	-0.2004(4)	57(4)
Rigaru AIC-55 unnacioni-	$A_{int} = 0.037$	C12E	0.8234(0) 0.7891(4)	0.0482 (4	-0.2569(4)	5.7(4) 4.4(3)
eter	$\theta_{\rm max} = 27.5$	C174	0.7091(4) 0.3792(4)	0 1335 (3	0.1357(4)	34(3)
$2\theta - \omega$ scans	$h = 0 \rightarrow 18$	C17B	0.3410(4)	0.0814 (3	0.0116(4)	39(3)
Absorption correction:	$k = 0 \rightarrow 22$	C17C	0.2473 (5)	0.0886 (4	-0.0253(4)	4.8 (3)
ψ scans	$l = -19 \rightarrow 19$	C17D	0.1917 (4)	0.1465 (4) 0.0025 (4)	4.6 (3)
$T_{min} = 0.967$ $T_{max} =$	3 standard reflections	C17E	0.2292 (5)	0.1980 (4) 0.0670 (5)	4.7 (3)
1 mm = 0.907, 1 max = 1.000	monitored eveny 150	C17F	0.3229 (5)	0.1919 (4) 0.1026 (4)	4.4 (3)
	monitored every 150	01	0.7089 (3)	-0.0159 (2) 0.2257 (3)	4.4 (2)
9006 measured renections	reflections	C21A	0.7001 (9)	-0.0567 (7) 0.2938 (8)	4.2 (6)
8669 independent reflections	intensity decay: 0.24%	O2A	0.6768 (6)	-0.0376 (5) 0.3661 (5)	6.0 (5)
4167 observed reflections		C21 <i>B</i>	0.765 (2)	-0.061 (1)	0.262 (1)	7 (1)
$[l > 3\sigma(l)]$		O2 <i>B</i>	0.849(1)	-0.056 (1)	0.294 (1)	9.2 (9)
[. ,(.)]		C22A	0.7281 (7)	-0.1421 (6) 0.2707 (6)	4.5 (7)
Pafinamant		FIA	0./133(8)	-0.1821 (9) 0.3427 (6)	6.0 (4)
Кејтетет		FZA E2A	0.0/90(9)	-0.1/2(1)	0.1993 (6)	/.0(5)
Refinement on F	$(\Delta/\sigma)_{\rm max} < 0.001$	FJA	0.8185(7)	-0.144 (1)	0.2596 (8)	9.3 (4)
R = 0.064	$\Delta \rho_{max} = 0.59 \text{ e} \text{ Å}^{-3}$					
wR = 0.083	$\Delta q_{\rm min} = -0.59 {\rm c} {\rm \AA}^{-3}$	_		<u>.</u>		. • .
S = 1.05	Extinction correction: none	Ta	able 2. Seled	cted geome	tric parameters	(A, °)
3 - 1.73	Extinction correction: none	Fe1—N1		2 048 (5)	C17-C18	1 400

Fe1—N2 Fe1—N3

Fe1-N4 Fe1-O1

N1-C1

N1-C18 N2-C13 N2-C16 N3-C8 N3-C11

N4—C3

N4-C6

C1-C2 C1-C20 C2—C3 C2-C2A C3-C4 C4---C5 C5-C6 C6---C7 C7_C8 C7-C7A C8—C9 C9-C10 C10-C11 C11-C12 C12-C13 C12-C12A C13-C14 C14—C15 C15—C16 C16-C17

Table 1. Fractional atomic coordinates and isotropic or	
equivalent isotropic displacement parameters (Ų)	

Atomic scattering factors

(1974, Vol. IV)

from International Tables

for X-ray Crystallography

B_{iso} for C22A, F1A, F2A and F3A, $B_{eq} = (4/3)\sum_i \sum_j \beta_{ij} \mathbf{a}_i \cdot \mathbf{a}_j$ for all others.						
	x	у	Z	B_{ea}/B_{iso}		
Fel	0.71112 (6)	0.09414 (5)	0.21536 (5)	3.03 (3)		
NI	0.5850(3)	0.1253 (3)	0.2599 (3)	3.2 (2)		
N2	0.6479 (3)	0.1134 (2)	0.0858 (3)	3.1 (2)		
N3	0.8386(3)	0.1112 (2)	0.1650 (3)	3.0 (2)		
N4	0.7767 (3)	0.1275 (3)	0.3392 (3)	3.1 (2)		
Cl	0.5693 (4)	0.1284 (3)	0.3508 (4)	3.5 (3)		
C2	0.6377 (4)	0.1355 (3)	0.4245 (3)	3.3 (2)		
C3	0.7348 (4)	0.1393 (3)	0.4180 (3)	3.3 (2)		
C4	0.8042 (4)	0.1538 (4)	0.4914 (3)	3.9 (3)		
C5	0.8886 (4)	0.1503 (4)	0.4591 (4)	3.9 (3)		
C6	0.8727 (4)	0.1319 (3)	0.3640 (4)	3.6 (3)		
C7	0.9430 (4)	0.1190 (3)	0.3075 (4)	3.2 (2)		
C8	0.9262 (4)	0.1068 (3)	0.2147 (3)	3.2 (2)		
C9	0.9967 (4)	0.0896 (4)	0.1555 (4)	3.7 (3)		
C10	0.9543 (4)	0.0854 (3)	0.0707 (4)	3.7 (3)		
C11	0.8559 (4)	0.1005 (3)	0.0753 (3)	3.2 (2)		
C12	0.7877 (4)	0.1075 (3)	-0.0001 (3)	3.5 (3)		

, °)

	·····	- (,)
2.048 (5)	C17—C18	1.400 (8)
2.061 (4)	C17—C17A	1.496 (8)
2.054 (5)	C18-C19	1.432 (9)
2.054 (4)	C19—C20	1.353 (8)
1.921 (4)	C2A—C2B	1.36(1)
1.392 (7)	C2A—C2F	1.36(1)
1.383 (7)	C2B—C2C	1.37 (1)
1.383 (7)	C2C—C2D	1.34 (1)
1.399 (7)	C2D-C2E	1.34 (1)
1.379 (7)	C2E—C2F	1.40(1)
1.393 (7)	C7A—C7B	1.390 (8)
1.382 (7)	C7A—C7F	1.396 (9)
1.378 (7)	C7 <i>B</i> —C7 <i>C</i>	1.383 (8)
1.389 (7)	C7C—C7D	1.37 (1)
1.441 (9)	C7D—C7E	1.36 (1)
1.396 (8)	C7E—C7F	1.376 (9)
1.491 (8)	C12A—C12B	1.40(1)
1.412 (7)	C12A—C12F	1.379 (8)
1.340 (8)	C12B—C12C	1.39 (1)
1.441 (8)	C12C—C12D	1.38 (1)
1.389 (8)	C12D-C12E	1.33 (1)
1.389 (7)	C12E—C12F	1.373 (9)
1.505 (8)	C17A—C17B	1.381 (8)
1.432 (8)	C17A—C17F	1.378 (9)
1.339 (7)	C17 <i>B</i> —C17 <i>C</i>	1.391 (9)
1.431 (8)	C17C—C17D	1.37 (1)
1.405 (7)	C17DC17E	1.376 (9)
1.398 (9)	C17E—C17F	1.384 (9)
1.490 (8)	O1—C21A	1.25 (1)
1.429 (8)	O1—C21B	1.21 (2)
1.339 (9)	C21A—O2A	1.20 (2)
1.439 (8)	C21 <i>B</i> —O2 <i>B</i>	1.23 (3)
1.398 (8)		

4167 reflections

508 parameters

refined

 $w = 1/\sigma^2(F_o)$

H-atom parameters not

N1—Fe1—N2	87.0 (2)	N2-C13-C14	110.0 (5)
N1—Fe1—N3	156.3 (2)	C12-C13-C14	124.3 (5)
N1—Fe1—N4	88.1 (2)	C13-C14-C15	107.9 (5)
N1-Fe1-01	102.4 (2)	C14-C15-C16	107.4 (5)
N2-Fe1-N3	87.2 (2)	N2-C16-C15	109.3 (5)
N2—Fe1—N4	154.2 (2)	N2-C16-C17	126.1 (5)
N2-Fe1-O1	103.2 (2)	C15-C16-C17	124.6 (5)
N3—Fe1—N4	87.2 (2)	C16-C17-C18	123.4 (5)
N3-Fe1-01	101.3 (2)	C16-C17-C17A	118.8 (5)
N4—Fe1—O1	102.7(2)	C18-C17-C17A	117.7 (5)
Fe1_N1_C1	124.0(3)	N1-C18-C17	124.9 (5)
Fe1_N1_C18	127 2 (4)	N1-C18-C19	109.8 (5)
	106 1 (5)	C17-C18-C19	125.3 (5)
Fe1N2C13	127.7(4)	C18-C19-C20	107.5 (5)
Fe1N2C16	127.1 (3)	C1 - C20 - C19	107.5 (5)
C13 N2 C16	105 3 (4)	$C^2 - C^2 A - C^2 B$	121.3 (6)
Ee1_N3_C8	125 3 (3)	$C^2 - C^2 A - C^2 F$	121.7 (6)
Fel N3_C11	125.5 (3)	C^{2B}	117.0 (6)
C8 N3_C11	125.5(3)	$C_{2B} = C_{2B} = C_{2C}$	1216(7)
Ee1 N4 C3	103.2(4) 127.2(4)	$C_{2B} - C_{2C} - C_{2D}$	120.9 (8)
Fe1 = N4 = C6	1267(4)	$C^2C - C^2D - C^2F$	119.0 (7)
$C_3 N_4 C_6$	105 6 (4)	C^2D C^2E C^2E	120.2 (8)
	126.6 (5)	$C^2A - C^2F - C^2F$	121.1 (8)
$N_1 - C_1 - C_2$	109 1 (4)	C7 - C7A - C7B	120.2 (5)
C_{2}	124 3 (5)	C7 - C7A - C7F	122.1 (5)
$C_1 - C_2 - C_3$	124.5 (5)	C7B - C7A - C7F	117.7 (5)
$C_1 - C_2 - C_3$	116.9 (5)	C7B - C7C - C7D	119.0 (6)
C_{3}	118.6 (5)	C7C - C7D - C7F	120.6 (6)
N4_C3_C2	124.7(5)	C7D - C7E - C7E	120.7 (6)
N4_C3_C4	110.5 (5)	C7A - C7F - C7F	120.4 (6)
$C^{2} - C^{3} - C^{4}$	124.8 (5)	C_{12} C_{12A} C_{12B}	119.2 (5)
$C_{2} = C_{3} = C_{4} = C_{5}$	107 2 (5)	C12 $C12A$ $C12F$	122.3 (6)
C3-C5-C6	107.9 (5)	C12B $C12A$ $C12F$	118 5 (6)
N4_C6_C5	108.8 (5)	C12A - C12B - C12C	118 3 (6)
N4-C6-C7	125.8 (5)	$C_{12}^{12} = C_{12}^{12} = $	121 3 (8)
C5_C6_C7	125.0(5) 125.4(5)	$C_{12}C_{}C_{12}D_{}C_{12}E_{}C_{-$	119.7 (7)
$C_{5} = C_{0} = C_{7}$	124 4 (5)	$C_{12}D_{}C_{12}F_{}C_{1$	120.7 (7)
$C_{0} = C_{1} = C_{0}$	117 3 (5)	C12A - C12F - C12F	1214(6)
$C_{1} = C_{1} = C_{1}$	118 3 (5)	C17 $-C17A$ $-C17B$	120.9 (5)
N3 C8 C7	124.9 (5)	C17 $C17A$ $C17F$	120.0 (5)
N3_C8_C9	1095(4)	C17B - C17A - C17F	119.1 (5)
C7 - C8 - C9	125.6 (5)	C17A - C17B - C17C	1201(6)
$C_{1} = C_{2} = C_{1}$	108 3 (5)	C178 - C17C - C17D	120.4 (6)
	106.5 (5)	C17C - C17D - C17E	119.6 (6)
N3_C11_C10	110.0 (4)	C17D - C17E - C17F	120.1 (6)
N3_C11_C12	1249(5)	C17A - C17F - C17F	120.7 (6)
	125.0(5)	Fe1-01-C21A	129.3 (6)
C11 - C12 - C12	123.6 (5)	Fe1 = 01 = C21B	132(1)
C11 - C12 - C124	117.6 (5)	$01 - C^{2}1B - O^{2}B$	134 (2)
C13_C12_C124	118.8 (5)	01 - C21A - 02A	129(1)
N2-C13-C12	125.6 (5)	C7A—C7B—C7C	121.6 (6)

Table 3. Spin states, coordination-group parameters (Å)and space groups for mononuclear high-spin and inter-mediate-spin pentacoordinate oxygen-ligated (Por)iron-(III) compounds

 $Fe \cdots C_{i'}$ is the distance from the Fe atom to the center of the mean plane of the 24-atom core and Fe—N_p is the average distance from the Fe atom to the porphinato-core N atoms.

	c	F a O	Fa C	Eo N	Space
	ა	re0	$re\cdots c_{l'}$	$re-n_p$	group
$[Fe(TTP)(OCH_3)]^a$	5/2	1.816 (2)	0.562(1)	2.082 (2)	$P2_1/n$
[Fe(tp-MePP)(CO2CH3))] 5/2	1.898 (4)	0.520(1)	2.067 (3)	12/c
1/2CH3COOH ^b					
[Fe(TPP)(OCOCF ₃)] ^c	5/2	1.921 (4)	0.483 (1)	2.054 (5)	P21/a
$[Fe(TPP)(SO_2C_6H_5)]^d$	5/2	1.92 (1)	0.45 (2)	2.05 (2)	P 1
[Fe(TPP)(OSO3H)]	5/2	1.926 (4)	0.42	2.042 (5)	P2/c
$1/2C_6H_6^{e}$					
[Fe(TPP)(SO ₃ CH ₃)]	5/2	1.95 (1)	0.412 (2)	2.05 (2)	Pbca
CHCl ₃ ^f					
[Fe(TPP)(SO ₃ CF ₃)] ^g	5/2, 3/2*	1.946 (6)	0.38	2.030 (6)	P21/a
[Fe(TPP)(OClO ₃)]	5/2, 3/2†	2.029 (4)	0.30	2.001 (5)	P21/n
$1/2(m-xylene)^{h}$					

References: (a) Lemcomte, Chadwick, Coppens & Stevens (1983); (b) Oumous, Lecomte, Protas, Cocolios & Guilard (1984); (c) this work; (d) Cocolios, Lagrange, Guilard, Oumous & Lecomte (1984); (e) Scheidt, Lee & Finnegan (1988); (f) Li et al. (1987); (g) Gonzalez & Wilson (1994); (h) Reed et al. (1979).

> * Spin state is $\sim 75\% S = 5/2$. † Spin state is $\sim 45\% S = 5/2$.

The crystal used for data collection was mounted on the tip of a glass fiber with epoxy cement. Measurements were made at 193 K using a fixed-tube, low-temperature attachment designed and manufactured by Molecular Structure Corporation; temperature control during data collection was ± 2 K. All independent data to $[(\sin\theta)/\lambda]_{max} = 0.65 \text{ Å}^{-1}$ were measured. Laue symmetry and systematic absences indicated the space group $P2_1/a$. The structure was solved using the program MITHRIL (Gilmore, 1984) to locate the Fe atom. All remaining non-H atoms were located using the direct methods program DIRDIF (Beurskens, 1984) and further refined by difference Fourier syntheses using TEXSAN (Molecular Structure Corporation, 1988). H atoms were included in the structurefactor calculations with idealized geometries (C-H 0.95 Å) and were assigned isotropic displacement parameters which were 20% greater than the B_{eq} of the atom to which they were bonded. Full-matrix least-squares refinement minimized $\sum w(|F_o| - |F_c|)^2$ with all non H-atoms, except the trifluoromethyl group, refined anisotropically. A decay correction was not applied.

This work was supported by the National Institutes of Health grant GM-28451 from the National Institute of General Medical Sciences and grant C-0627 from the Robert A. Welch Foundation. The Rigaku AFC-5S X-ray diffractometer was purchased, in part, through an instrumentation grant from the National Science Foundation.

Lists of structure factors, anisotropic displacement parameters, H-atom coordinates and rigid-group parameters have been deposited with the IUCr (Reference: BK0001). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Adler, A. D., Longo, F. D., Finarelli, J. D., Goldmacher, J., Assour, J. & Korsakoff, L. (1967). J. Org. Chem. 32, 476.
- Beurskens, P. T. (1984). DIRDIF. Direct Methods for Difference Structures – an Automatic Procedure for Phase Extension and Refinement of Difference Structure Factors. Technical Report 1984/1. Crystallography Laboratory, Toernooiveld, 6525 ED Nijmegen, The Netherlands.
- Cocolios, P., Lagrange, G., Guilard, R., Oumous, H. & Lecomte, C. (1984). J. Chem. Soc. Dalton Trans. pp. 567–574.
- Fleischer, E. B., Palmer, J. M., Srivastava, T. S. & Chaterjee, A. (1971). J. Am. Chem. Soc. 93, 3162-3165.
- Gilmore, C. J. (1984). J. Appl. Cryst. 17, 42-46.
- Gonzalez, J. A. & Wilson, L. J. (1994). Inorg. Chem. 33, 1543-1553.
- Gupta, G. P., Lang, G., Lee, Y. J., Scheidt, W. R., Shelly, K. & Reed, C. A. (1987). *Inorg. Chem.* 26, 3022–3030.
- Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
- Kim, J. B., Adler, A. D. & Longo, F. R. (1978). *The Porphyrins*, Vol. 1, edited by D. Dolphin, pp. 85–100. New York: Academic Press.

- Lecomte, C., Chadwick, D. L., Coppens, P. & Stevens, E. D. (1983). Inorg. Chem. 22, 2982–2992.
- Li, N., Levendis, D., Coppens, P., Kastner, M. E., Carruth, L. E. & Scheidt, W. R. (1987). Acta Cryst. C43, 1835-1838.
- Masuda, H., Taga, T., Osaki, K., Sugimoto, H., Yoshida, Z. & Ogoshi, H. (1980). Inorg. Chem. 19, 950–955.
- Molecular Structure Corporation (1988). TEXSAN. Single Crystal Structure Analysis Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- Oumous, H., Lecomte, C., Protas, J., Cocolios, P. & Guilard, R. (1984). *Polyhedron*, **3**, 651–659.
- Reed, C. A., Mashkio, T., Bentley, S. P., Kastner, M. E., Scheidt, W. R., Spartalain, K. & Lang, G. (1979). J. Am. Chem. Soc. 101, 2948–2958.
- Scheidt, W. R. & Lee Y. J. (1987). Structure and Bonding. 64. Metal Complexes with Tetrapyrrole Ligands 1, edited by J. W. Buchler, pp. 1-70. New York: Springer-Verlag.
- Scheidt, W. R., Lee, Y. J. & Finnegan, M. G. (1988). Inorg. Chem. 27, 4725–4730.
- Scheidt, W. R. & Reed, C. A. (1981). Chem. Rev. 81, 543-555.

An ORTEPII (Johnson, 1976) plot of the complex cation with the atomic numbering scheme is shown in Fig. 1. The Cr— N_{amine} distances [average 2.146 (9) Å] are slightly longer than the Cr— $N_{pyridine}$ distances [average 2.093 (9) Å]. The two Cl⁻ ligands coordinate to Cr in a *cis* configuration. The six-membered ring defined by atoms Cr, N1, C1, C2, C3 and N2 has a chair conformation. Some disorder of the atoms of the PF_6^- anion is indicated by their large anisotropic displacement parameters.

Acta Cryst. (1995). C51, 1494-1495

cis-Dichloro[*N*,*N*'-dimethyl-*N*,*N*'-bis(2pyridylmethyl)-1,3-propanediamine]chromium(III) Hexafluorophosphate

WING-TAK WONG

Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong

WAH-HUNG LEUNG

Department of Chemistry, The University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong

(Received 3 January 1995; accepted 14 February 1995)

Abstract

In the title compound, $[CrCl_2(C_{17}H_{24}N_4)]PF_6$, the coordination sphere of the Cr^{3+} ion is a distorted octahedron defined by the four N atoms of the tetradentate ligand and two *cis* Cl^- ions.

Comment

The coordination chemistry of the tetradentate ligand N,N'-dimethyl-N,N'-bis(2-pyridylmethyl)-1,3-propanediamine (L_1) has been investigated extensively (Che, Tang & Li, 1990; Che, Tang, Lee, Wong & Lau, 1992), but its structural chemistry is less well established. We therefore prepared a chromium complex, (I), of this ligand and determined its structure by X-ray analysis.

Fig. 1. An ORTEPII (Johnson, 1976) drawing of the complex cation showing the atom-numbering scheme and 50% probability displacement ellipsoids. H atoms are represented as spheres of arbitrary radii.

Experimental

The title complex containing the N,N'-dimethyl-N,N'-bis(2pyridylmethyl)-1,3-propanediamine (L_1) ligand was prepared by the interaction of anhydrous CrCl₃ and L_1 in dimethylformamide. The dark yellow reaction mixture was heated under reflux overnight. The solvent was then evaporated off *in vacuo* and the dark yellow residue washed with diethyl ether and redissolved in a minimum amount of water. To the green filtrate was added excess NaPF₆. The resulting grey precipitate was collected, washed with water and dried in air. Recrystallization from acetonitrile/diethyl ether solution afforded green crystals suitable for X-ray analysis.

Crystal data

 $[CrCl_2(C_{17}H_{24}N_4)]PF_6$ $M_r = 552.29$ Mo $K\alpha$ radiation $\lambda = 0.71073$ Å

Acta Crystallographica Section C ISSN 0108-2701 ©1995